On scores, losing scores and total scores in hypertournaments

نویسندگان

  • Shariefuddin Pirzada
  • Muhammad Ali Khan
  • Guofei Zhou
  • Koko K. Kayibi
چکیده

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the score si (losing score ri) of a vertex vi is the number of arcs containing vi in which vi is not the last element (in which vi is the last element). The total score of vi is defined as ti = si − ri. In this paper we obtain stronger inequalities for the quantities ∑ i∈I ri, ∑ i∈I si and ∑ i∈I ti, where I ⊆ {1, 2, . . . , n}. Furthermore, we discuss the case of equality for these inequalities. We also characterize total score sequences of strong k-hypertournaments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On scores, losing scores and total scores of hypertournaments

A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the score si (losing score ri) of a vertex vi is the number of arcs containing vi in which vi is not the last element (in which vi is the last element). The total score of vi is defined as ti = si − ri. In this ...

متن کامل

Preprint SCORES , INEQUALITIES AND REGULAR HYPERTOURNAMENTS

Abstract. A k -hypertournament is a complete k -hypergraph with each k -edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k hypertournament, the score si (losing score ri ) of a vertex vi is the number of edges containing vi in which vi is not the last element (in which vi is the last element). In this paper we obtain inequalities involv...

متن کامل

On the scores and degrees in hypertournaments

A k-hypertournament H = (V,A), where V is the vertex set and A is an arc set, is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the edge. In a k-hypertournament, the score si(losing score ri) of a vertex is the number of edges containing vi in which vi is not the last element(in which vi is the last element) and t...

متن کامل

On k-hypertournament losing scores

We give a new and short proof of a theorem on k-hypertournament losing scores due to Zhou et al. [8].

متن کامل

New Proof of a Theorem on K-hypertournament Losing Scores

In this paper, we give a new and short proof of a Theorem on k-hypertournament losing scores due to Zhou et al.[7].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EJGTA

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015